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ABSTRACT 

The transient temperature distribution in a rotating cylindrical shell which is heated by an incident time 
varying heat flux (nuclear pulse) as well as a constant heat flux, is determined numerically by a finite 
difference method. The shell is cooled by combined convection and thermal radiation. The effects of cooling 
and rotation on the temperature distribution as well as the time- and space-dependence are shown. Rotation 
provides a sinusoidal temperature variation in time for a fixed surface and circumferential position. 
Increased rotation reduces the maximum temperature in the shell and also provides a more uniform 
temperature distribution in the circumferential direction. 
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= part of coefficient 
= constants 
= thermal diffusivity, k/pcp 

= coefficients in the numerical solution 
= Biot number, h(r2 - r1)/k 
= specific heat 
= duration of the incident heat pulse 
= outer diameter 
= dimensionless time step 
= Fourier number 
= Grashof number 
= gravitational acceleration 
= convective heat transfer coefficient 
= indices for grids 
= thermal conductivity in the shell 
= thermal conductivity of air 
= heat flux number, αQmax(r2 - r1)/kTinit 
- number of grid points 
= radiation number, σεT3
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= Nusselt number 
= time level 
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= Reynolds number 
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= inner radius of the solid shell 
= outer radius of the solid shell 
= dimensionless radial co-ordinate, (r - r1)i(r2 -r1) 
= subscript denotes outer surface 
= temperature 
= dimensionless temperature, (T-Tinit/Tinit) 
= initial temperature 
= radiation background temperature 
= ambient air temperature 
= surface temperature 
= time 
= dimensionless time, a1tl(r2 - r1)2, Fourier 
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= absorptivity for the incident radiative heat flux 
= volumetric thermal expansion coefficient 
= angle 
= step size 
= emissivity for thermal radiation 
= angle co-ordinate 
= kinematic viscosity 
= density 
= Stefan-Boltzmann constant 
= dimensionless angle, θ/2π 
= original position 
= angular velocity rad/s 
= dimensionless angular velocity (Ω/(2π))(r2 -r1) 
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INTRODUCTION 

Transient heat conduction in a solid with convective or radiative cooling at the surface occurs 
frequently in real world applications. This paper is concerned with transient heat conduction in a 
rotating cylindrical shell exposed to a time varying incident heat flux as well as a constant heat 
flux and the outer surface is cooled by thermal radiation and convection. 

With the space adventure in the 1960s a number of papers were published concerning 
interplanetary conditions. One of those more related to this paper is that of Charnes and Raynor1 

where analytical solutions of the temperature distribution in a thin walled rotating cylindrical 
body exposed to solar heating were presented. The study was continued a few years later by 
Olmstead et al.2 by adding a time varying incident heat pulse. However, only conduction in the 
circumferential direction was considered and no convective loss was considered. More recently 
Sundén3 analysed a problem similar to the one in this paper. The most important difference was 
that in that paper the cylindrical shell did not rotate. A brief literature survey was also presented 
there. The present work may be regarded as an extension and continuation of the work by 
Sundén3. 

FORMULATION OF THE PROBLEM 

A homogeneous circular cylindrical shell, shown in Figure 1, with the inner surface thermally 
insulated, is rotating uniformly around its axis with the angular velocity ω. Initially the shell has 
a uniform temperature Tinit. Suddenly the outer surface is exposed to a time dependent incident 
radiative heat flux as depicted in Figure 2. The incident heat flux is assumed to be an optically 
parallel beam, which means that only the surface facing the incident flux is exposed, and that at 
an arbitrary position on the surface the heat flux should be multiplied by the cosine of the angle 
between the surface normal and direction of the heat flux. Cooling takes place at the outer surface 
by convection with the ambient air at temperature T02, and by thermal radiation exchange with the 
background at a temperature T01. 

The following assumptions are applied in the analysis: two dimensional heat conduction in 
space, the cylinder material is opaque to thermal radiation, no heat sinks or sources are present, 
the physical properties and the convective heat transfer coefficient are uniform and independent 
of time and temperature, the ambient air is transparent to thermal radiation, the ambient and 
background temperatures are independent of time. 
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THE INCIDENT HEAT FLUX 

In engineering applications, the incident heat flux can be of various types and in Schneider4 some 
examples are provided. Most of these are for aerospace applications occurring when ascending or 
entering the planetary atmosphere. Other examples of transient heat fluxes are radiative heat from 
a nuclear burst, solar flux and radiant heating from a laser beam. The incident heat fluxes 
considered in this paper are a heat pulse like that of a nuclear bomb and a constant heat flux like 
solar flux. Data of the transient heat flux released from a nuclear burst have been curve-fitted by 
Olmstead et al.2 but the exponential expression for that curve has some shortcomings for small 
values of t (time) and is not suitable for this work. Instead a heat pulse which is assumed piecewise 
linear with time is adapted from Sundén3, see Figure 2. The total heat energy from the pulse is: 
Q101= 0-1262QmaxD where D is the duration time of the pulse. 

GOVERNING EQUATION AND BOUNDARY CONDITIONS 

The heat conduction equation in two dimensional cylindrical co-ordinates with a constant thermal 
conductivity is transformed into a non-dimensional form by introducing the following 
dimensionless variables, 

T'=(T-Tin i t ) /T i n i t / , r '= ( r - r 1 ) / ( r 2 - r Ι ) ,φ -θ /2π , t - a1 t / ( r 2 - r1 ) 2 

One then obtains, 

where R' = r' + r1/(r2 - r1). 
The shell is at a uniform temperature initially. The initial condition of the problem is then, 

T'(r',φ,0) = 0. (2) 
The inner surface of the shell is thermally insulated and the boundary condition is thus, 

∂T'/∂r'(0,φ,t') =0. (3) 
For the outer surface, where the front surface is exposed to the incident radiative heat flux, and 
heat exchange by thermal radiation and convection also occurs, one obtains in non-dimensional 
form, 

In (4) subscript s denotes surface and γ is the angle between the surface normal and the incident 
heat flux. The angle θ is measured from a fixed point. With θ measured as in Figure 1 one has γ = 
θ + ωt. Only positions with cos(γ) ≥ 0 will receive the incident heat flux, i.e. on the side exposed 
to the incident flux. Since the shell is rotating with a constant speed, the surface elements will be 
exposed in a periodic manner. It should be noted that if no cooling is present, the incident heat flux 
is totally absorbed. 

Two well-known non-dimensional numbers are recognized in (4), the Biot number Bi = h(r2 -
r1)/k and the radiation number NR = σεT3init(r2 - r1)/k. By defining a heat flux number as NHF = 
αQmax(r2-r1)/kTinit, (4) can be written as, 

where 
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By using various values of NR and Bi, the importance of the radiative and convective cooling can 
be investigated. The strength of the incident heat flux is controlled by the heat flux number NHF. 
The rotation affects the heat transfer process primarily by controlling the exposure time periods of 
the surface. Its influence on the convective cooling rate is discussed in another section. 

NUMERICAL APPROXIMATION 

By using Taylor series expansions and replacing space derivatives by central finite difference 
approximations, and the time derivative by a first order forward approximation and using constant 
grid spacing in each direction, (1) becomes, 

where i represents the r-direction,y the φ-direction and n denotes the time level. 
By taking an energy balance for a control volume situated at the outer surface5, one obtains in 
non-dimensional form, 

where ∂T'/∂r's is the boundary condition for the outer surface according to (5). From (7) the 
required expression for the temperature at the surface grid point (TN,j) can be obtained. Index Ν 
denotes the outer surface, so that R'N_1/4 means R'N- Δr ' /4 . 

If the temperatures on the right hand side of (6) and (7) are taken at time level n, i.e. the 
temperatures are known, one obtains an explicit form and the unknown temperatures at time level 
n + 1 can be solved directly. If the temperatures on the right hand side are taken at time level η + 
1 (unknown), one obtains an implicit form and the equations must be solved iteratively or 
simultaneously at each time level. The explicit form is however sometimes unstable and hence the 
implicit form is used. 

In order to reduce the necessary number of nodes in the r-direction and enhance the numerical 
procedure, the temperature in the energy storage term (the left-hand side of (7)) is set at an 
additional nodal point N-1/4, i.e. in the centre of the control volume. By using the one dimensional 
heat conduction equation the temperature in the control volume can be expressed in terms of the 
neighbouring values as, 

where A = R'N_1/4/R'N_1,j, Β = R'N,j/R'N_1.j C = R'N,J/R'N_1/4,j. 

METHOD OF NUMERICAL SOLUTION 

Equations (6) and (7) are set in implicit forms. The properties on the right hand side of the 
equations are taken at time level n + 1, and due to the non-linear boundary condition the equations 
are solved iteratively at each time level. For (6) we obtain, 

where 
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The solution procedure is a line-by-line technique using the TDMA algorithm combined with the 
Gauss-Seidel method as described by Patankar6. For each time-level the procedure starts at the 
outer surface at φ0 = φ(t = 0) = 0 solving (10) and then the TDMA method is applied in the radial 
direction for (9). The procedure is thereafter repeated for the next φ0 and so on until φ0 = 1 is 
reached and then the procedure restarts at φ0 = 0. This iterative process is repeated until a 
convergence criterion is satisfied which in this case was chosen so that the maximum relative 
change in all temperatures, between two successive iterations, should be less than 10-5. 

All computations were carried out on an IBM compatible PC with a 486 (66 MHz) intel 
processor. 

Sample calculations 
The thermal response of the shell depends on the heating and cooling, thermal diffusivity of the 
shell material, time, size of the shell and the rotation speed. The time and the thermal diffusivity 
are represented by the Fourier number Fο - t'. The cooling is represented by the Biot number Bi 
and the radiation number NR, while the heating is controlled by the heat flux number NHF. 

Calculations have been performed for one shell size (r1 = 5.9mm, r2 = 7.3mm), but two 
different materials were considered, one with a low thermal diffusivity a1 = 6.6-10-8m2/s (k = 0.15 
W/mK) and one with a high thermal diffusivity a1 = 6.5·10-5m2/s (k = 170 W/mK). The nuclear 
pulse as shown in Figure 2 has a duration of 21.4 seconds and reaches its maximum after 1 second. 
The value of the constant incident flux is chosen to the maximum value of the nuclear pulse. The 
ambient temperature T02, the background temperature T01 and also the initial temperature Tinit are 
all set to 288 K. The appropriate number of grid points and the time increment have been 
determined by comparison with a simple steady state situation and several test calculations. The 
time increment used for both cases is in real time 10_3s corresponding to a non-dimensional time 
step dt' = 3.36-10-5 and 3.33-10-2, respectively. For the radial direction Ν = 16 was appropriate 
while for the circumferential direction Μ - 30 was satisfactory. 

ai,j = 1 /Δ t ' + 2 / Δ r ' 2 +2/(2πR'Δφ)2,bi,j =1/Ar'2 + 1 / ( 2 R ' Δ r ' ) , 

ci,j =1/Δr ' 2 -1 / (2R 'Δr ' ) , 

Equation (7) can be written as, 

where 
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The convective heat transfer coefficient is considered constant in time and space and set as an 
average value. Sundén3 studied the effects of circumferential variations of the Biot number and 
found that the effects were very small. To obtain an approximate relevant value of the Biot number 
a simplified equation for combined effects of rotation, natural convection and forced convection 
from Wong7 is applied. The equation reads: 

where 

The outer shell diameter D is D = 2r2. 
Equation (11) is valid if, 

Re<1.5·104 10 3 <Re ω <5 ·10 4 0.6 < Pr < 15 value in [ ]< 109. 
At high free stream velocities the forced convection term dominates. With the fluid properties at 
an approximate mean value of T≈ 430 Κ and u∞, = 30 m/s, which is considered to be the maximum 
free stream velocity, equation (11) implies that Bimax:≈0.23/k. Without the forced convection term 
and with a high rotation speed say ω = 100 rad/s the Biot number will be about one-tenth of Bimax. 
The maximum radiation number is (ε = 1) NRmax ≈ 1.9·10-3/k. However, to reveal the effects of 
the cooling parameters clearly the values of the Biot number and radiation number are extended 
outside their maximum values in some cases. 

RESULTS AND DISCUSSION 

Constant incident heat flux 

For a constant incident heat flux only the steady conditions are considered. Note that steady 
conditions mean steady for an outside viewer. However, the temperature for a given point at the 
shell is changing with the rotation and a given angle φ means different surface elements at 
different times. 
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With a thermal diffusivity a1 = 6.6·10-8 m2/s the corresponding heat flux number NHF = 9.1, 
and the maximum radiation number NRmax = 0.013. The circumferential surface temperature 
distributions for various rotation speeds Ω with NRmax and no convective cooling Bi = 0, are 
shown in Figure 3. The circumferential variations are greatest for the stationary case and vanish 
with increasing rotation speed. With higher thermal diffusivity (read conductivity) the variations 
become smaller and for k = 170 W/mK they are less than 5 per cent for the stationary case (Ω = 0). 
With increased rotation speed the maximum surface temperature moves away from the point 
facing the incident heat flux (φ = 0) in the direction of the rotation. At Ω ≈ 30 (ω = 2π rad/s) the 
maximum surface temperature occurs at θ≈50.4° while at infinite speed the maximum will occur 
at θ = 71.46o1. Figure 4 shows the steady temperature distribution in the shell for Ω = 3. The shell 
has been scaled-up non-proportionally to improve the interpretation. One can clearly see that the 
shell is heated when facing the incident heat flux and cooled when it is not. For the stationary case 
the radial variation is less than 3 per cent. With a high rotation speed, the temperature within the 
shell becomes homogeneous at a temperature Ts satisfying the heat balance, 

The convergence criterion used for the steady condition is that the relative difference for the 
incoming and reradiated heat is less than 0.5 per cent. Charnes and Raynor1 present an 
approximate analytical solution for a thin walled rotating cylinder. However, their solution gives 
an error which is considerable when the circumferential variations of the temperature are great. 
For the stationary case presented above the error in the heat balance is more than 50 per cent and 
thus their result differs considerably from ours. With more moderate circumferential temperature 
variations the error in their solution becomes much smaller. 

Nuclear pulse 
Case 1 
With a thermal diffusivity a1 = 6.6·10-8 m2/s, the corresponding heat flux number is NHF = 9.1. 
Biot numbers Bi > 1.5 and NR > 0.013 are of more academic than engineering interest. The 
dimensionless rotational speed Ω = 30 is equivalent to an angular velocity ω = 2π rad/s. 
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Figure 5a shows the surface temperature at φ - 0 vs dimensionless time, without cooling for 
various rotation speeds Ω. For small Ω the surface at φ= 0 is exposed to the incident heat flux for 
nearly the whole time period of interest. The temperature increases rapidly to its peak value and 
then decreases as the heat flux decays and the heat is conducted into the body. With higher Ω a 
surface element is exposed for shorter intervals and the curve becomes more damped. The 
temperature distributions vs the Fourier number for a given surface point, φ0 = φ(t = 0) = 0, 
moving with the rotation speed are shown in Figure 5b. Notice the sinusoidal temperature 
distribution for higher Ω, increasing when exposed to the heat flux and decreasing (the heat is 
conducted into the body) when not. 

Owing to the low thermal diffusivity the heat is slowly conducted into the shell. The radial 
temperature variation for various times at φ = 0 and Ω = 3 can be seen in Figure 6, and Figure 7 
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shows radial distributions for various Ω at t' = 0.05 which roughly corresponds to the time when 
the maximum surface temperature occurs (real time 1.5s). The circumferential variations with the 
same parameters are shown in Figures 8 and 9, respectively. Note the poor heat conduction in the 
circumferential direction resulting in the fact that the temperature remains at its initial value when 
not exposed to the incident heat flux. The maximum surface temperature at high Ω is less than half 
of that at low Ω. As for the case with a constant incident heat flux the maximum temperature 
moves with the rotation speed and occurs at an angle greater than φ = 0. 

Figure 10 shows the surface temperature response at φ = 0 for Ω = 3 to the cooling parameters 
Bi and NR. When these parameters are increased, the cooling becomes more effective and the 
temperature level is reduced. The cooling effect of the radiation is at this temperature level about 
ten times as high as the convective cooling if the Biot number and the radiation number have the 
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same value. However, as mentioned before, the relevant Biot number is normally much greater 
than the radiation number, and the curve with Bi =1.5 and NR = 0 approximates the real possible 
maximum cooling effect appropriately. It can also be noticed that the maximum temperature is 
reached earlier as the values of Bi and NR are increased. Sunden3 provides a more detailed study 
of the effects of the cooling parameters. 

It seems that rotation is a very important parameter if one wants to reduce the maximum surface 
temperature. With relevant cooling parameters the maximum surface temperature is reduced by 
about 25 per cent compared to the non-cooling case, while an increase of the rotation from Ω = 3 
to Ω = 30 reduces the maximum temperature by about 50 per cent. 
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Case 2 
A thermal diffusivity a1 = 6.5·10-5 m2/s corresponds to NHF = 0.0080 and the relevant Biot and 
radiation numbers are negligible owing to the high thermal conductivity. Thus only cases without 
cooling are considered. The rotation speed Ω = 0.03 is equivalent to an angular velocity ω-2π 
rad/s. The behaviour of the temperature field due to rotation, cooling and Fourier number (time) 
is similar to case 1, but the temperature level is much lower because of the greater heat conduction 
within the body. Figures 11 and 12 provide examples of temperature variations for this case. 
Figure 11 shows the temperature distribution in the radial direction at φ = 0 for Ω = 0.003. A 
circumferential variation of the surface temperature at t' = 50 (real time 1.5 s) is provided in 
Figure 12. 
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CONCLUSIONS 

The transient heat conduction in a rotating cylindrical shell exposed to a time varying incident 
surface heat flux has been numerically investigated. Rotation provides a sinusoidal temperature 
distribution in time for a given surface and circumferential position. Rotation will also reduce the 
maximum surface temperature. Increased cooling decreases the temperature level and the 
maximum temperature is reached earlier. For a shell material with a high thermal diffusivity 
(conductivity), the temperature levels are much lower and the temperature more evenly 
distributed within the shell than for a shell material of low thermal diffusivity. For a constant heat 
flux the steady temperature distribution for the stationary case shows great circumferential 
variations for a shell material of low thermal conductivity. With higher thermal conductivity or 
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increasing rotation speed the circumferential temperature variations diminish. Rotation will also 
move the maximum temperature away from the point facing the incident heat flux. 
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